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We measure the dispersion of the longitudinal sound waves in a suspension of solid spheres using Bril-
louin scattering. We find two distinct propagating longitudinal modes when the wavelength of the sound
becomes comparable to the sphere diameter. The higher-frequency mode has a velocity intermediate be-
tween those of the pure solid and pure liquid phases, and its velocity increases with increasing solid
volume fraction. The dispersion curve of this mode has distinct gaps, and the group velocity goes to zero
near these gaps. We interpret this mode as a compressional excitation which propagates through both
the liquid and the solid, as expected for a composite medium. The gaps in the dispersion curve result
from the very large scattering of the excitation by the spheres, and occur at frequencies where the
scattering from a single, isolated sphere is predicted to be a maximim due to a resonance in the sphere.
By contrast, the lower-frequency mode has a velocity that is less than those in either the pure solid or the
pure fluid. We interpret this mode as a surface acoustic excitation, which propagates between adjacent
spheres by means of the exponentially decaying portion of the excitation in the fluid at the surface of the
spheres. A summary of a theoretical treatment is also presented.
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INTRODUCTION

The propagation of sound through random media
comprised of a composite of solid and fluid has long been
a subject of great interest and importance. Its importance
stems in part from the use of acoustic probes for nondes-
tructive testing and for seismic exploration. In both
cases, random, fluid-filled media are frequently encoun-
tered, and knowledge of the propagation of sound
through these materials is essential for proper interpreta-
tion of the data. The propagation of sound through these
materials depends sensitively on the connectivity and
structure of the solid grains, and, depending on the na-
ture of the medium, can exhibit a rich variety of fascinat-
ing behavior. One of the simplest, yet most fundamental
geometries is that of a suspension of solid spheres im-
mersed in a fluid. The study of such a system dates back
to the work of Lord Rayleigh, who studied the scattering
of sound waves from isolated spheres in a fluid [1,2].
More recently, suspensions of spheres at higher concen-
tration have been investigated in the long-wavelength
limit, A >>d, where A is the wavelength of the sound and
d the diameter of the spheres [3,4]. At these high concen-
trations, multiple scattering of the sound becomes impor-
tant, and theoretical treatments of the behavior have fol-
lowed an approach which explicitly considers the multi-
ple scattering of waves in the fluid by the solid spheres
[4]. The predicted results are in good agreement with ex-
tensive experimental results obtained for the propagation
of ultrasonic waves through suspensions of uniform glass
beads in a fluid. Since the continuous phase is a fluid and
cannot support shear, only a single longitudinal mode can
propagate in the limit of A>>d [5]. The same behavior
was long expected to persist to shorter wavelengths,
where A ~d. In this regime, the scattering from individu-
al spheres can excite internal resonances within the
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spheres, and some recent experiments on the propagation
of sound through curing epoxies have been interpreted in
terms of localization of sound [6]. However, a more care-
fully controlled study of sound propagation through a
suspension of hard-sphere colloidal particles identified a
new propagating longitudinal acoustic excitation when
A~d [7,8]. This mode was interpreted as surface excita-
tion which propagated coherently between adjacent
spheres. At even shorter wavelengths, this excitation re-
verts to a Stoneley wave [9], a propagating excitation
confined to the interface between an elastic solid and a
fluid. In this paper, we present a more detailed account
of the behavior of sound propagation through suspen-
sions of hard-sphere colloidal particles, and discuss the
dispersion of the phonons in this system as the sound
wavelength A is varied from much larger than the diame-
ter of the spheres, d, to comparable to d, to much shorter
than d.

We study the propagation of sound through colloidal
suspensions interacting solely through the excluded
volume interaction, or hard-sphere colloids. The charac-
teristics of such a colloidal suspension are highly con-
trollable, as the particle size, solid volume fraction,
acoustic wavelength, and acoustic frequency can all be in-
dependently varied. The colloidal particles used in this
work are suspended in a fluid that has the same index of
refraction for light as do the particles themselves, thus el-
iminating any multiple scattering of light. This enables
us to use light scattering techniques to probe the
structural and acoustic properties of the suspension. We
use static light scattering to determine the structural
correlations of the spheres by measuring the static struc-
ture factor S(q), where the scattering wave vector is
q =(41mn /A)sin6 /2, with n the index of refraction and 6
the scattering angle. We use Brillouin scattering to mea-
sure the frequency of the thermally excited sound modes
within the suspension. A peak is observed in the Bril-
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louin spectrum at a frequency corresponding to a propa-
gating acoustic excitation whose wavelength matches the
inverse of the scattering wave vector. By varying the
scattering angle, we can vary g and hence the size of the
acoustic wavelength relative to the sphere diameter. We
can thereby determine the full dispersion curves of pho-
nons in a suspension of hard-sphere colloids. We mea-
sure these dispersion curves for different volume fractions
of the solids, and for particles of different diameters.

EXPERIMENT

The colloidal particles are monodisperse spheres of po-
lymethylmethacrylate (PMMA), coated by a thin layer of
grafted polymer with a thickness of about 15 nm, much
smaller than the diameter of the particles themselves.
The polymer coating sterically stabilizes the particles,
and ensures that the interaction between them is very
well approximated as that of hard spheres [10]. These
colloids exhibit a very rich phase behavior as the effective
particle volume fraction (particle volume fraction includ-
ing the grafted polymer layer) ¢, is changed. At low ¢,,
the colloidal particles behave as a fluid, with short-range
correlations between the colloidal particles that are fluid-
like. At larger volume fractions, ¢, >0.49, the colloidal
particles can order to form a colloidal crystal. For
volume fractions between ¢,~0.49 and ¢,~0.53, the
colloidal liquid and crystal phases coexist, while for ¢,
greater than 0.53, the equilibrium phase is purely crystal-
line. However, once the volume fraction becomes greater
than about 0.56, there is no longer sufficient room for the
particles to rearrange themselves to attain long-range
crystalline order, and the structure remains a disordered
glass. In this work, we do not study the effects of crystal-
line order on the propagation of sound, but rather restrict
our attention to the case of the disordered structures
formed when the sample is initially tumbled to form a
well mixed state.

The colloids were suspended in a mixture of dodecane
and carbon disulfide. The index of refraction of PMMA
is 1.51, while that of dodecane is 1.42 and that of carbon
disulfide is 1.62. Thus by choosing the appropriate mix-
ture of the two suspending fluids, the suspensions could
be perfectly index matched, eliminating any multiple
scattering of the light. Nevertheless, the Rayleigh peak
was invariably about four orders of magnitude more in-
tense than the Brillouin peak, due to the remnant scatter-
ing from the spheres. Thus the Brillouin scattering was
resolved by using a Fabry-Pérot interferometer operated
in a five-pass configuration, which provided sufficient
contrast and resolution to observe the spectra. The sam-
ples were held in curvets with four flat surfaces, 1 cm on
a side. The tops were sealed with Teflon stoppers to
prevent the evaporation of the solvent.

The laser source for the Brillouin scattering was either
an Ar™ laseor operated at 5145 Z\, or a Kr™ laser, operat-
ed at 6471 A. In either case, an internal étalon was used
to force the laser to operate on a single longitudinal
mode. The spectra at a given g were found to be indepen-
dent of the laser wavelength. The colloids exhibit strong
self-focusing of the incident laser, which is more pro-
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nounced in the green than in the red. Thus the incident
power was kept sufficiently low to avoid any deleterious
effects due to the self-focusing. Moreover, we ascertained
that the spectra acquired were independent of the in-
cident laser power. Thus the incident power was main-
tained below about 100 mW, focused to a spot size of
about 100 ym in diameter. The scattered light was im-
aged onto a 150-um-diam pinhole to improve the resolu-
tion and reduce parasitic scattering, and then collimated
into the Fabry-Pérot interferometer. The finesse of the
Fabry-Pérot interferometer was about 50, while the con-
trast was about 10'°, The output of the Fabry-Pérot in-
terferometer was detected using a cooled photomultiplier
tube, operated in the standard photon -counting
configuration. The alignment of the Fabry-Pérot inter-
ferometer was actively stabilized, and spectra were typi-
cally collected for roughly 1 h to obtain data of sufficient
statistical accuracy.

We can determine the phase velocity of the acoustic
excitations from the frequencies of the peaks in the Bril-
louin spectra, v=w/q. We measure the polarized Bril-
louin scattering which is sensitive only to longitudinal ex-
citations in the system. By varying the scattering angle,
we can vary the scattering wave vector g, enabling us to
measure the dispersion curve for the longitudinal pho-
nons in the hard-sphere system. Our measurements are
made at scattering angles ranging from 9° to 170°, corre-
sponding to g varying from 0.002 to 0.04 nm !, using the
two laser lines. An important physical parameter in
determining the behavior of this system is qd, or the ratio
of the acoustic wavelength, determined by the scattering
wave vector, to the diameter of the spheres, d, where we
consider the diameter only of the core of the spheres,
without the grafted polymer layer. To extend the accessi-
ble range of gd, we use two sets of spheres, with different
diameters. The first set has a core diameter of 340 nm, so
that their diameter with the grafted polymer coating is
370 nm. These spheres allow data to be collected for gd
ranging from about 1 to 14. They are particularly well
suited for collecting data near the peak in the static struc-
ture factor, qd =2, where the acoustic wavelength and
the sphere diameter are equal. The second set of spheres
has a core diameter of 650 nm so that their diameter in-
cluding the grafted polymer layer is 680 nm. With these
spheres, we can collect data for gd ranging from about 2
to 25. Thus these spheres are most suitable for studying
the behavior as gd becomes much larger, so the acoustic
wavelength becomes smaller than the sphere diameter.

To fully determine the behavior of this system, we ob-
tain data for different volume fractions of the spheres.
To measure the volume fraction, the samples are gently
centrifuged until the colloids settle at the bottom of the
containers. We assume that the sediment consists of ran-
domly close-packed spheres. However, the packing of
the spheres is determined by their outer radii, including
the grafted polymer layer. Thus we assume that the
effective volume fraction of the sediment is ¢, =0.64, and
calculate the true solid volume fraction ¢ by correcting
for the thickness of the grafter polymer layer, assuming
its thickness to be 15 nm. The volume fraction of the
close-packed sediment is the highest value of ¢ that we
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study. To study lower values of ¢, we measure the height
of the sediment and adjust the height of the supernatant
to obtain the desired volume fraction when the sample is
remixed by tumbling. We estimate that the error in
determining the volume fraction is about 5%, due pri-
marily to the uncertainty in measuring the heights. We
note that, because of the grafted polymer layer, the cores
of the colloidal particles form a disconnected system of
solid spheres, even at the highest volume fractions mea-
sured. Finally, we ensure that none of the samples are al-
lowed to settle and form colloidal crystals, so that there is
no long-range positional order between the particles used
in the experiments reported here.

RESULTS

The average structure in the colloidal suspension is
most easily determined using static light scattering. We
use a detector mounted on the arm of a goniometer to
measure the angular dependence of the scattered intensi-
ty, or I(q), for each of the samples studied with Brillouin
scattering. We also use a very dilute sample of colloids,
with ¢ on the order of 1074 to measure the angular
dependence of the static light scattering from isolated
spheres, thereby determining their form factor, P(q).
The static structure factor is then determined by calculat-
ing S(q)=1(q)/P(q). In this fashion, we can verify that
the static structure factor is well described by that for
hard spheres at the same volume fraction, as has been
shown previously for these PMMA samples [11]. For the
small spheres, we can clearly vary the scattering angle to
attain scattering vectors smaller than the peak at gd =27.
At these small scattering vectors, the wavelengths of
sound is larger than the diameter of the spheres. More-
over, we can attain scattering wave vectors near the peak
of the static structure factor, where the sound wavelength
is comparable to the diameter of the spheres, and also at
scattering wave vectors significantly larger than the peak
in the static structure factor, where the sound wavelength
is much smaller than the diameter of the spheres. Thus
by varying the scattering angle of our Brillouin measure-
ments, we can determine the behavior of sound as its
wavelength is varied from smaller than, to comparable to,
then to greater than the diameter of the spheres.

To verify the essential properties of this system, we
first acquire data at very low scattering wave vectors,
where the wavelength of the sound is much greater than
the diameter of the spheres. Here we expect hydro-
dynamic behavior, with only a single propagating longi-
tudinal sound wave. The lowest scattering angle that we
are able to attain is 6 ~=9°, corresponding to gd =0.8, al-
though the spectra were of poor quality at this low a
scattering angle. The quality of the data improves
significantly as the scattering angle is increased, and in
Fig. 1 we show a series of Brillouin spectra collected for
several different volume fractions, ¢=0.16, 0.38, and
0.51, using the small spheres, with excitations at 6471 A
and a scattering angle of 6=16°, corresponding to
gd =1.7. For all volume fractions, we observe only a sin-
gle mode, as reflected by a single pair of Brillouin peaks.
For the lowest volume fraction, ¢=0.16, the Brillouin
peaks are virtually unchanged, both in shape and intensi-
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FIG. 1. Brillouin spectra for three different volume fractions,
$=0.16, 0.38, and 0.51, of 340-nm-diam PMMA spheres mea-
sured at gd =~1.7, in the hydrodynamic, or long-wavelength re-
gime of propagation of acoustic waves.

ty, from that of the pure index-matching fluid, with no
spheres present. However, the Rayleigh peak is increased
in intensity by several orders of magnitude, reflecting the
additional static scattering from the spheres, despite the
good index matching. As ¢ increases, the Brillouin peaks
shift to higher frequencies and become broader. This
behavior is expected, as the velocity of sound in the solid
of the spheres is roughly twice that in the fluid, so that
the average velocity in the medium should increase.

Since the wavelength of the sound is still substantially
larger than the diameter of the spheres, the dependence
of the velocity on ¢ can be described with an effective-
medium model [12]. For these isolated spheres, we use
Wood’s model [5] to describe the average elastic modulus
of the medium, 8. Thus we have

1_¢  1-¢
ﬁ Bs B f
where B; and B; are the elastic moduli of the pure index-

matching fluid and the pure PMMA, respectively. The
velocity of sound is then given by

(1)

v=VB/p, )
where p is the volume averaged density, given by
p=¢p,+(1—¢)p,, (3)

where again the subscripts s and f refer to the so.id
spheres and the fluid, respectively. Wood’s approxima-
tion for the average velocity is exact in the limit of long
wavelength [5].

All of the parameters in these expressions can be deter-
mined from independent measurements. The elastic
moduli for the pure index-matching fluid and the PMMA
spheres are determined by using Brillouin scattering to
measure the sound velocity and then calculating the elas-
tic moduli from Eq. (2). The sound velocity of the index-
matching fluid is measured directly. However, to mea-
sure the sound velocity in the PMMA, it is preferable to
use the spheres themselves, as their properties may differ
somewhat from the bulk polymer. Fortunately, as dis-
cussed later, it is possible to observe a peak in the Bril-
louin scattering from the larger spheres at very high
scattering angles which corresponds to the longitudinal
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sound wave within the spheres themselves. At high an-
gles, the inverse of the scattering vector is sufficiently
small, and gd sufficiently large, that several sound wave-
lengths fit within each sphere, allowing us to determine
the speed of sound within the spheres. From these mea-
surements, we obtain v, =2.29 km/sec. For the velocity
of the index-matching fluid, we find v,=1.18 km/sec.
We use the literature value for the density of PMMA,
and calculate the density of the index-matching fluid
from the known volumes of each fluid used and the litera-
ture values of their respective densities. This enables us
to calculate the average velocity of sound in the medium
using Egs. (1)-(3) above. A comparison of this calcula-
tion and the data obtained at =16° is shown in Fig. 2.
As can be seen, excellent agreement is obtained,
confirming this description of the single longitudinal
mode in the long-wavelength limit. We emphasize that
there are no fitting parameters in comparing the calculat-
ed behavior with the measurements, as all quantities in
Egs. (1) and (2) are known independently. Similarly good
agreement is found for the data obtained at lower scatter-
ing angles. Furthermore, much better agreement is ob-
tained by calculating the volume fraction using the value
of the core radius of the spheres rather than the radius
which determines their phase behavior and includes the
thickness of the grafted polymer layer. This confirms
that, for sound propagation, the grafted polymer layer
behaves more like the fluid than the solid.

As the scattering wave vector increases, a qualitative
change is observed in the behavior of the Brillouin peaks.
The frequency shift of the peaks no longer increases with
¢ as was the case at smaller g. Moreover, the width of
the peaks becomes larger. For the small spheres, this
change is first observed as g approaches 0.009 nm ™!, cor-
responding to a value of gd around 7, where the wave-
length of the sound is roughly twice the diameter of the
spheres. Most surprisingly, for volume fractions larger
than 0.2, a new, second Brillouin peak is clearly observed
at a higher frequency. The intensity of this second peak is
much weaker than that of the first peak for gd around .
Similar behavior is observed for the larger spheres, but at
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FIG. 2. The volume fraction dependence of the sound veloci-
ty in the smaller spheres, measured at small angle, correspond-
ing to gd =~ 1.7, in the hydrodynamic regime for the propagation
of acoustic waves. The solid line is the calculation using the

effective-medium theory. The measured values of the sound ve-
locities in the pure phases are used in the calculation.
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smaller angles, so that gd is also roughly 7. In addition,
for the larger spheres, the second peak is apparently ob-
served only for somewhat higher volume fractions than is
the case for the small spheres. An example of the spectra
from the larger spheres illustrating the onset of the
second peak for volume fractions of ¢=0.10, 0.36, and
0.57 is shown in Fig. 3. A weak peak is clearly observed
for ¢=0.57, and is also present, albeit less distinct, for
¢=0.36. By contrast, for the =0. 10, there is not even a
hint of a second peak.

As the scattering wave vector increases still further,
these changes become more pronounced. Both Brillouin
modes are clearly resolved, and are of roughly equal in-
tensity by the time gd =27. An example of the spectra
obtained for three different volume fractions of the small
spheres when g¢d =2.8m, corresponding to g =0.26
nm !, is shown in Fig. 4. At the two higher volume frac-
tions, ¢=0.51 and 0.38, the two Brillouin peaks can each
be clearly distinguished. At the lowest volume fraction,
¢=0.16, the single peak observed appears to be some-
what asymmetric, suggesting that it may be composed of
two peaks that are not completely resolved. Further-
more, as the volume fraction increases, the frequency
shift between the two modes increases. This occurs be-
cause the frequency of the lower-frequency mode de-
creases with increasing volume fraction, while that of the
higher-frequency mode increases with increasing volume
fraction. In all cases, both peaks correspond to longitudi-
nal modes, as confirmed by the absence of any peaks in
the depolarized spectra. In Brillouin scattering, longitu-
dinal acoustic modes couple only to polarized scattering,
while transverse modes can couple to depolarized scatter-
ing as well [13].

Finally, to investigate the behavior at the largest possi-
ble values of gd, we measure the spectra of the larger
spheres at high angles, and change the spacing of the
Fabry-Pérot interferometer to increase the free spectral
range, allowing us to resolve higher frequencies. A typi-
cal spectrum for ¢=0.57, obtained at a scattering angle
of 171°, corresponding to gd ~23.9 nm™!, is shown in
Fig. 5. Now, instead of two peaks, three Brillouin peaks
are resolved. Here, gd is so large that we can resolve the
Brillouin scattering independently in each of the indivi-
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FIG. 3. Brillouin spectra for three different volume fractions,
$=0.10, 0.36, and 0.57, of the larger spheres with d =650 nm,
for gd =~. The second mode is barely discernible in the spec-
trum for the highest volume fraction.
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FIG. 4. Brillouin spectra for three different volume fractions,
¢=0.16, 0.38, and 0.51, of 340-nm-diam PMMA spheres mea-
sured at gd =~2.87. Two distinct modes are clearly observable
for the two higher volume fractions.

dual phases. In particular, we can resolve the scattering
from within the solid spheres themselves. This results in
the highest-frequency mode. The velocity of this mode,
determined from the average of several measurements of
this spectrum, is v ~2.29 km/sec. This provides an ex-
perimental measure of the speed of sound in the solid
PMMA spheres, which was used in the effective-medium
theory that describes the data at small gd. This value is
slightly lower than that of bulk PMMA (Lucite) which is
2.7 km/sec [14], presumably reflecting the difference in
the material that makes up the spheres.

We summarize the behavior of the sound propagation
by plotting the dispersion relations. In Fig. 6, we plot the
behavior for three different volume fractions of the small
spheres, $=0.16, 0.38, and 0.51. We note that these core
volume fractions correspond to effective phase volume
fractions, which includes the thickness of the grafted po-
lymer layer, of 0.21, 0.49, and 0.64, respectively. Thus
the highest volume fraction represents the maximum
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FIG. 5. Brillouin spectra at very high gd, obtained with the
larger spheres at an angle of 171° corresponding to gd =~23.9.
Three distinct modes are now observed. The highest-frequency
mode, which is observed as a shoulder on the tail of the other
two, corresponds to sound propagation in the pure solid, while
the middle mode corresponds to sound propagation in the pure
index-matching fluid. The lowest-frequency mode corresponds
to a Stoneley wave propagating along a nearly flat interface. At
these high values of ¢gd, the wavelength is sufficiently small for
the sound modes to be resolved within the pure phases, and for
the interface between them to appear nearly flat.
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FIG. 6. The dispersion curves for the longitudinal acoustic
modes for three different volume fractions, ¢=0.16, 0.38, and
0.51, of the 340-nm-diam spheres. The lowest volume fraction
exhibits only a single mode, while the two other volume frac-
tions exhibit two modes above ¢ ~0.008 nm~!. The splitting
between the modes increases with volume fraction. The solid
line represents the dispersion curve for the pure PMMA while
the dashed line represents the dispersion curve for the pure
index-matching fluid.

packing that can be achieved for randomly packed hard
spheres. Moreover, we again emphasize that the solid
cores of the spheres never touch their neighbors, even at
the highest volume fraction, because of the stabilizing
layer of grated polymer. For comparison, we also show
in Fig. 6 the linear dispersion curves expected for the lon-
gitudinal sound waves of the pure materials that
comprise the suspensions of hard spheres. The solid line
corresponds to the solid PMMA while the dashed line
corresponds to the index-matching fluid. The sound ve-
locities used to plot these dispersion curves for the pure
phases are obtained experimentally: The velocity in the
pure index-matching fluid is measured directly from the
Brillouin peaks in the pure fluid, while that in the
PMMA spheres is determined from Brillouin scattering
from the large spheres at very high scattering angle.

There are several remarkable features in the dispersion
curves for sound propagation in hard spheres, shown in
Fig. 6. At low g, only a single mode is observed, for all ¢,
with linear dispersion as q goes to zero. The frequencies
of this mode increase with increasing volume fraction of
the PMMA. However, as g increases further, the disper-
sion curves for all three volume fractions begin to flatten
and the frequency of the mode for the higher volume
fractions actually drops below that of the lower volume
fractions. For ¢ above 0.16, the second, higher-frequency
mode appears at ¢~0.009 nm~!, corresponding to
gd =. This mode persists as g increases. Furthermore,
the splitting between the two modes increases with in-
creasing volume fraction. By contrast, at the lowest
volume fraction shown, ¢ =0.16, the measured frequency
of the single mode observed is virtually unchanged from
that of the pure index-matching fluid.

It is the behavior of the higher volume fractions of the
hard-sphere suspensions that is the most surprising. For
these, two distinct modes are resolved for all g above
0.009 nm !, corresponding to gd above 7. The frequency
of the higher mode always lies between the frequencies
for the pure liquid and the pure solid phases. In addition,
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its frequency increases with increasing volume fraction.
This behavior is characteristic for longitudinal sound
propagation in a composite material comprised of two
phases, one with a larger sound velocity than the other.
By contrast, the behavior of the lower-frequency mode is
much more unusual, and unexpected. Its frequency lies
below that of the lowest frequency for the velocity in any
of the pure phases that make up the medium. Moreover,
its frequency decreases with increasing volume fraction of
the solid phase, which adds more material with a higher
velocity of sound to the composite material. Finally, the
frequencies for both modes, for all three volume frac-
tions, soften around the peak in the static structure fac-
tor, which occurs around ¢ ~0.015 nm ™!, corresponding
to gd =2m. The softening of the lower-frequency mode is
considerably more pronounced, and the degree of soften-
ing increases with increasing volume fraction.

To investigate the behavior of the sound propagation
at even larger values of gd, and to compare the behavior
for different sizes spheres, we also measure the dispersion
curves for the larger spheres, and plot them in Fig. 7 for
three different volume fractions, ¢ =0.10, 0.36, and 0.57.
The overall trends of these data are the same as for the
small spheres. At the very lowest values of ¢, only a sin-
gle mode is observed, while for all values above g =0.005
nm !, two distinct modes are again observed. Again, the
frequency of the higher mode lies between that of the
pure index-matching fluid and the pure solid, while that
of the lower mode lies below those of both the pure
phases that comprise the suspension. Moreover, the
splitting between the two modes again increases with in-
creasing volume fraction.

To better compare the behaviors of the two different
sized spheres, we scale the two sets of data together and
plot the results in Fig. 8. The scaling is accomplished by
multiplying each axis by the diameter of the sphere, d.
Thus, on the horizontal axis we plot gd, which is a di-
mensionless quantity, while on the vertical axis, we plot
wd, which has units of velocity. The vertical axis could

q(nm™)

FIG. 7. The dispersion curves for the longitudinal acoustic
modes for three different volume fractions, ¢=0.10, 0.36, and
0.57, of the larger spheres with d =650 nm. The lowest volume
fraction exhibits only a single mode, while the two other volume
fractions exhibit two modes above g ~0.005 nm~'. The split-
ting between the modes increases with volume fraction. The
solid line represents the dispersion curve for the pure PMMA
while the dashed line represents the dispersion curve for the
pure index-matching fluid.
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FIG. 8. Scaled dispersion curves for the 340- and 650-nm-
diam spheres for different volume fractions. The solid symbols
refer to the larger spheres while the open symbols refer to the
smaller spheres.

also be made dimensionless by normalizing by velocity.
This scaling ensures that the dispersion curves of the
pure phases exhibit the proper scaling behavior. We limit
the plot to the lower values of gd for which overlapping
data are available. In Fig. 8, the solid points represent
the data of the larger spheres, with d =650 nm, while the
open points represent the data of the smaller spheres,
with d =340 nm. As expected the scaled data for the two
sphere sizes do exhibit the same trends: the splitting of
the two modes occurs at the same point, gd =, for both
data sets, and both sets of data exhibit a softening around
gd =2m. However, the scaling of the data is not exact.
The degree of softening of the modes at gd =27 is sub-
stantially less pronounced for the larger spheres than for
the smaller spheres. Furthermore, the splitting between
the normalized frequencies of the two modes is con-
sistently less pronounced for the larger spheres than for
the smaller spheres. Thus the high-frequency mode of
the larger spheres always has a lower normalized frequen-
cy for a given value of gd and ¢ than that of the smaller
spheres. Similarly, the low-frequency mode of the larger
spheres always has a larger normalized frequency for a
given value of gd and ¢ than that of the smaller spheres.
Consequently, a larger volume fraction of spheres is re-
quired for the larger spheres to clearly resolve the two
modes.

In addition to the inexact scaling of the modes for the
two sizes of spheres, the behavior of the larger spheres
also exhibits clear trends as gd increases, which cannot be
seen for the smaller spheres because of the limits in the
values of gd that can be achieved. To illustrate these
trends more clearly, in Fig. 9 we plot the phase velocities,
v =w/gq, of the two modes for several volume fractions of
the larger spheres. The phase velocity for the single
mode observed for the lowest volume fraction, ¢=0. 10,
is almost indistinguishable from that of the pure index-
matching fluid, and exhibits little dispersion for all the
wave vectors probed, as shown by the diamonds in Fig. 9.
By contrast, the dispersion in the phase velocities of both
the modes observed for the higher volume fractions is ap-
parent. However, at large values of gd, the velocities of
both modes appear to approach asymptotic values, which
also appear to be independent of the volume fraction.
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FIG. 9. The phase velocities for three different volume frac-
tions of the 650-nm-diam spheres, plotted as a function of gd.
The velocity of the single mode present for the lowest volume
fraction is nearly indistinguishable from that of the liquid, 1.18
km/sec. The velocity of the higher-frequency mode reaches a
peak around gd =, then decreases as gd increases, ultimately
asymptotically approaching that of the pure fluid for both
volume fractions. The velocity of the lower-frequency mode de-
creases until gd ~27, then increases, asymptotically approach-
ing a value of 0.86 km/sec for both volume fractions, corre-
sponding to the velocity of a Stoneley wave at a flat interface be-
tween solid PMMA and the index-matching fluid.

While the velocity of the faster mode is considerably
greater than that of the fluid at lower values of gd, at
larger values, it decreases and appears to asymptotically
approach the velocity of the pure index-matching fluid.
In addition, the velocity of the slower mode displays a
softening around gd =2, but as gd increases, the veloci-
ty appears to approach a constant value that is well
below that of the index-matching fluid.

Finally, we also measure the widths of the Brillouin
modes, which we express in terms of a quality factor,
Q =w /8w, where the width dw is the measured full width
at half maximum of the mode. The quality factor reflects
the number of wavelengths the sound mode propagates
before it is damped. In Fig. 10 we plot the quality factors
measured for the smaller spheres as a function of gd. As
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FIG. 10. The quality factors, Q =w /8w, for the two modes
for three different volume fractions, $=0.16, 0.38, and 0.51, of
the 340-nm-diam spheres, plotted as a function of gd. The Q of
the higher-frequency mode exhibits a pronounced peak around
qd =21r.

qd approaches zero, the lower-frequency mode is well
defined, as indicated by its large values of Q. However, as
gd increases above about 7, the value of Q for the lower-
frequency mode has decreased to a value of only about 2,
where it remains for all higher values of gd. By contrast,
the Q of the higher-frequency mode exhibits a pro-
nounced resonance around gd ~ 27, reflecting a decrease
in the damping of the mode. We emphasize that the mea-
sured quality factors reflect the damping of the acoustic
modes in the composite medium of the spheres and fluid.
The Q for the acoustic modes in either of the pure media
is significantly higher. The increased damping of the
sound modes in the composite medium results from the
increased scattering of the acoustic excitations by the
spheres, rather than from viscous dissipation. The
behavior of Q for the larger spheres is consistent with
that shown in Fig. 10 for the smaller spheres, but the res-
onance at gd ~ 27 is not as pronounced, since the resolu-
tion in ¢d is not as high.

DISCUSSION

The most surprising feature of the dispersion curves
for hard-sphere colloids is the existence of two distinct
modes. For these systems, the continuous phase is a
fluid, which has no long-range rigidity, and thus cannot
support shear. Therefore only a single longitudinal mode
is expected. In fact, at very long wavelengths, this can be
shown rigorously to be the case [S]. Previous experiments
measuring sound propagation in suspensions of hard
spheres also found only a single mode [4]. These experi-
ments probed spheres made of glass rather than polymer,
and used ultrasonic techniques to measure the actual
propagation of sound through the beads. They were lim-
ited to wavelengths much larger than the sphere size, but
it was long assumed that the observation of the existence
of only a single mode of propagating sound would persist
to shorter wavelengths as well. This hypothesis was sup-
ported by theoretical treatments using a multiple scatter-
ing formalism to calculate the sound propagation
through suspensions of solid spheres.

An alternate possible explanation of these observations
is by analogy to the theoretical proposals of Biot [15,16].
He considered the propagation of sound in a porous
medium at wavelengths much larger than any charac-
teristic length scales of the medium, and at high frequen-
cies. The characteristic frequency required is determined
by the viscous penetration length, defined as | =V p /o,
where p is the density of the solid and 7 is the viscosity of
the fluid. This is the length scale of viscous coupling of
transverse waves from the solid into the fluid. When the
frequency is sufficiently high that / is less than the pore
size, the Biot theory applies. Then, the solid and the fluid
become decoupled, with one sound mode propagating
through the solid phase and a second, new mode propa-
gating through the fluid phase. This new slow mode is a
wave that propagates predominantly in the fluid, but its
velocity is slower than that in the pure fluid phase be-
cause of the tortuosity of its path. The veracity of Biot’s
prediction has been confirmed, both for sound propaga-
tion in some porous media structures [17] and for sound
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propagation through super fluid helium in a porous medi-
um [18]. At the frequencies used here, the viscous
penetration length is on the order of 1 um or less. This
can be less than the spacing between the spheres at the
lower volume fraction, although at high ¢, the typical
spacing between the surface of the spheres is smaller than
I. However, for Biot’s theory to apply, the solid phase of
the porous medium must be a contiguous, rigid structure
and the solid and fluid must form interconnecting phases.
This is not the case for a suspension of hard-sphere col-
loids. Because of the grafted polymer stabilizing layer,
the solid spheres are not interconnected, even at the
highest volume fractions studied. Furthermore, even if
the solid phase was completely interconnected, its tor-
tuosity is very nearly unity [19,20], so the decrease in the
sound velocity of the lower-frequency mode cannot be as-
cribed to a Biot slow wave. Thus we reject the Biot ap-
proach in describing these results.

Instead, we suggest an alternate physical picture of the
two modes. We consider the nature of each mode indi-
vidually. The higher-frequency mode has the dependence
on volume fraction expected for an acoustic excitation
propagating through a composite medium: the frequency
increases as the volume fraction of solid increases. Since
the velocity of sound is much greater in the pure solid
than in the pure fluid, the frequency of an acoustic excita-
tion propagating through the two media should also in-
crease. Furthermore, the frequency of this mode lies be-
tween those of the two pure materials. Thus we attribute
the higher-frequency mode to an acoustic excitation that
propagates through both the fluid and the solid. More-
over, since the single excitation observed at low gd also
has the same dependence on volume fraction, and is well
described by an effective medium model which assumes
that it propagates through the two materials, it too must
be associated with the acoustic excitation propagating
through the liquid and the solid spheres.

The nature of the propagation of this mode is strongly
influenced by the presence of the spheres. While the in-
dex of refraction of the fluid and the solid are very nearly
matched, eliminating any strong scattering of light from
the system, this is not the case for sound. There is a large
impedance mismatch for sound to propagate from one
material to the other, and as a result, the sound waves are
strongly scattered from the interfaces. The consequence
of this is most clearly observed by examining the disper-
sion curve for this mode for a single volume fraction. As
an example, we plot, in Fig. 11, the dispersion curve for
the higher-frequency mode for the smaller spheres with
¢=0.38. Two gaps in the dispersion curve are clearly
evident at frequencies of w=~10X10° and 20X10°
rad/sec, corresponding to frequencies where the excita-
tion does not propagate. Moreover, the dispersion curve
becomes flat on either side of the gaps. The frequencies
of these gaps correspond to the frequencies calculated for
the peaks in the scattering amplitude of a longitudinal
wave incident on a single sphere immersed in a fluid,
which are shown by the two arrows. Thus when the
scattering from the isolated spheres becomes very large,
the wave can no longer propagate, and gaps develop in
the dispersion curve. The large increase in the scattering

LING YE, JING LIU, PING SHENG, AND D. A. WEITZ 48

60 T B :
50 £ o
— Tk .
g 40 f o’ 3
ERE T ]
> 'o.
=20F , 0 3
3 [, o
10 F o o® e
RV
0 TSR Sy T
0 5 10 15
qd

FIG. 11. The dispersion curve of the high-frequency mode
for the 340-nm-diam spheres at ¢=0.38. The arrows corre-
spond to the frequencies of the peaks of the scattering ampli-
tudes of longitudinal acoustic waves incident on a single, isolat-
ed sphere immersed in a fluid.

from the individual spheres results from the excitation of
internal resonances within the spheres [21,22]. There are
a large number of these resonances at higher frequencies,
with the two gaps observed corresponding to the two
lowest-frequency resonances. Gaps in the dispersion
curve at higher frequencies may also be discernible, but
not as clearly. While sound at these frequencies cannot
propagate with the wave vectors corresponding to this
mode, it can propagate at the same frequency, but at
another wave vector. This is the lower-frequency mode.
The lower-frequency mode must have a different physi-
cal origin. It propagates at a frequency lower than that
of either of the two pure phases. Moreover, its velocity
decreases as the volume fraction of solids increases. This
slow velocity is the key to the origin of the mode. The
only mode that can propagate in a system comprised of a
solid and a fluid at a velocity that is slower than the lon-
gitudinal velocities in both materials is a Stoneley wave
[9]. This is a propagating wave confined to the interface
between a solid and a fluid. It is analogous to a Rayleigh
wave, which is a propagating wave confined to the inter-
face of solid and vacuum. The existence of a Stoneley
wave requires a shear modulus in the solid. It consists of
both longitudinal and transverse polarizations in the solid
and a purely longitudinal component in the fluid. The
magnitude of the oscillation decays exponentially away
from both of the surfaces, ensuring the confinement of
the excitation to the interface. While a Stoneley wave is a
solution to the elastic equations that is confined to a flat
interface, the excitation here is initially observed when
the wavelength of the sound is less than the size of a sin-
gle sphere. Moreover, from the width of the Brillouin
peaks, we can ascertain that the excitation propagates
over length scales larger than a single sphere. Thus this
excitation must propagate coherently from sphere to
sphere. This presumably occurs through the exponential-
ly decaying portions of the excitation in the fluid. If
another sphere is nearby, the excitation can hop between
the two spheres. This would account for the fact that
this new mode is only observed when the volume fraction
of the spheres is relatively large, ensuring that there are
neighboring spheres close by. Moreover, this would ac-
count for the very unusual dependence of the velocity on
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volume fraction. At higher volume fractions, there are
more interfaces relative to the amount of fluid. The ve-
locity of the excitation on the interfaces is lower than in
the fluid, thus leading to the measured decrease in the ve-
locity as the volume fraction of spheres increases.

Support for our interpretation comes from the plot of
the phase velocities measured for the larger spheres,
shown in Fig. 9. The velocity of the single mode ob-
served for the lowest volume fraction is almost indistin-
guishable from that of the index-matching fluid, at 1.18
km/sec. The velocity of the lower-frequency mode is ini-
tially quite slow, and decreases near gd ~2m. However,
as qd increases to much larger values, the velocity in-
creases somewhat, and then approaches an asymptotic
value, which is independent of volume fraction. At these
large values of gd, the interface appears to be nearly flat
on the scale of a wavelength. The velocity of this mode
measured at high gd is 0.86 km/sec, which corresponds
directly to the velocity calculated for a Stoneley wave at a
flat interface between PMMA and the index-matching
fluid. By contrast, the velocity of the higher-frequency
mode seems to decrease and asymptotically approach the
velocity of the index-matching fluid for all volume frac-
tions of spheres. This is again consistent with an
effective-medium picture for this excitation. At these
very large values of gd, it is possible to fit several wave-
lengths of the excitation in either a single sphere or in the
fluid between the spheres. Thus it is possible to detect
the excitations within each of the pure materials that
comprise the suspension. The higher-frequency excita-
tion therefore corresponds to the longitudinal sound
wave within the pure fluid. These observations lend
strong support to our interpretation of the results.

THEORY

The experimental results described above represent a
major challenge to theory since their explanation requires
the treatment of wave propagation in a strongly scatter-
ing medium, where the wavelength is comparable to the
size of the inhomogeneities. In order to achieve this goal,
a generalized coherent-potential-approximation (CPA)
approach is developed for the identification of quasi-
modes and the calculation of their dispersion relations.
The basic principle of this approach is simple and may be
best understood from the CPA conditions. For CPA, if
we let G denote the exact Green’s function for an acous-
tic wave in a random medium, then,

G=G,+G,TG, , @)

where G, is the Green’s function for a homogeneous
effective medium and 7T denotes the exact scattering
operator, including all the multiple scattering among
the spheres. By expressing Go=(p>—gq?)~!, where
q =w/c,,, c,, being the effective medium speed and p the
Fourier transform variable that is conjugate to the spatial
variable, the CPA condition for Eq. (4) is (T)=0
through the adjustment of g, where the angular brackets
denote configuration average. When that happens,
(G )=G,, and ¢ is identified as the wave vector of the ex-
citation. Since (T )=nt in the weak scattering limit,
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where t is the single-scatterer forward scattering ampli-
tude, n the volume concentration of the scatterer,
(T ) =0 is the equivalent to t =0, which means the CPA
condition is consistent with requiring the forward scatter-
ing amplitude to vanish for a single scatterer embedded
in an effective medium. In other words, when the scatter-
ing vanishes for a single scatterer, it also vanishes for the
whole medium on average, and this is precisely the condi-
tion for the existence of a coherent mode.

For the generalized CPA condition, instead of requir-
ing (T )=0, we look for minima of {T). The fact that
the scattering now does not vanish on average means that
the excitation must be a quasimode. However, since at
minima the scattering may still be weak, we may approxi-
mate (G ) by

1
(G)= 5 - (5)
p-—q —nt

The minima of { T') may thus be identified by the maxi-
ma of density of states (DOS), evaluated as (1/7)Im{G )
under the condition of elastic scattering (p =gq), so that
(G)Y=—(nt)"'. The maxima of DOS therefore corre-
spond directly to the minima in scattering, which, in
turn, give the best condition for the existence of a quasi-
mode since less scattering means the wave can coherently
propagate over a longer distance. In this approach we
also note that the minima in {7T') are also the places
where (T ) =nt is the best approximation. Therefore the
maxima of DOS are precisely the places where this ap-
proach is most accurate.

In order to implement this approach, it is necessary to
calculate the ¢ for a single solid particle. In a colloidal
suspension, each spherical solid particle is enveloped by
fluid. This microgeometry is to be contrasted with the al-
ternative possibilities in which the particles cluster and
touch. To carry out Green’s function calculations, this
strong short-range correlation between the solid and fluid
phases must be taken into account. For this purpose, we
consider as the basic scattering unit a coated sphere,
where the fluid coating thickness s is determined by the
solid particle concentration ¢ =d>/(d +2s)>.

To calculate the Green’s function for a single coated
sphere embedded in an effective medium, we start from
the elastic wave equation for each of the three homogene-
ous regions,

u

ot?
where u is the displacement, c, is the longitudinal and c,
the shear wave velocities. For the fluid coating and the
effective medium, ¢,=0. By decomposing u=—Vy
+V X A, with the vector potential A being further ex-
pressed as A=V Xr§, we get a pair of Helmholtz equa-
tions for ¥ and £&. Here ¢ is directly proportional to the
density variation, V-u. Since in Brillouin scattering the
light is coupled to the thermal excitations through
refractive-index changes induced by density variations,
the relevant Green’s function is that for measuring the ¢
response to a point scalar source, i.e.,

=c}Vu+(c;—c2)V(V-u), (6)

[V2+w®/c)(r)]gy(r,r')=8(r—1') , v}
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where  ¢,(r)=c¢,=2.7X 10° cm/sec for r<d/2,
cp(r)=¢;=1.2X 10° cm/sec for d/2<d/2+s, and
¢,(r)=w/q for r 25 +d /2. For the § field, on the other
hand, we have (V2+co2/c,2)g§(r,r’)=0 for r<d/2,
where ¢,=1.1X10° cm/sec, and g:=0 otherwise. The
8, and g, are coupled by the boundary conditions, i.e.,
continuity of normal displacement and normal stress, and
tangential stress equals zero at r =d /2; and the continui-
ty of normal displacement and stress at » =d /2-+s. Here
we have taken the fluid to be inviscid. The effect of
viscosity is investigated and numerical simulations are
presented elsewhere [22]. The Green’s function g,(r,r’)
is obtained by solving three boundary value problems
where the source point r’ is located in each of the three
spatial regions (sphere, coating, and the effective medi-
um). By Fourier transforming g,(r,r'), we get
g4(P1,P2,q;0), where the dependence on g and o is ex-
plicitly noted. Since g=G,+GytG,, the scattering
operator t for a single coated sphere may be thus ob-
tained. In accordance with the discussion above, the final
result of our calculation is the density of states,
Im(G) /7, evaluated with the condition of elastic
scattering.

The results of such calculations have been given in
Refs. [21,22]. With no adjustable parameters, the
theoretical results are in excellent quantitative agreement
with the data. Both the positions of the peaks of the
modes, and their widths, are determined theoretically,
and are in accord with the data presented here. A
separate calculation shows the frequency positions of the
sphere resonant scattering, indicated by the black arrows
in Fig. 11, coincide remarkably well with the gaps in the
dispersion relation of the high-frequency mode, and offer
the key to its understanding as arising from the antireso-
nance conditions for the single-sphere scattering. For the
low-frequency mode, on the other hand, the frequency
positions of the resonant scattering coincide with peaks
in the DOS. The maxima of DOS in this case arise from
the interaction between neighboring spheres and the re-
sulting split of a single resonance into two, with a scatter-
ing minimum in between. This scattering minimum thus
represents the antiresonance condition of two coupled
spheres. It can be picked out from our single-sphere cal-
culations because the effective medium gq is treated as a
variable, and as its value is scanned it effectively varies
the impedance at the coating—effective-medium interface,
which, from the point of view of a single sphere,
represents its interaction with the neighboring spheres.
A more detailed theoretical treatment of the problem, in-
cluding the calculation of the multisphere model and nu-
merical simulation, has been presented in Refs. [21,22].

CONCLUSIONS

In this paper, we have presented the results of an ex-
perimental study of the propagation of longitudinal
sound through a suspension of solid spheres. We use
PMMA spheres immersed in an index-matching fluid, el-
iminating any multiple scattering of light. This enables
us to use Brillouin scattering to measure the thermally
excited sound waves in the suspension. By varying the
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scattering angle, as well as the size of the spheres, we are
able to probe the frequency of the propagating sound
waves over values of gd extending from about 1 to about
25. This corresponds to the variation of the wavelength
of sound from values less than the diameter of the
spheres to much greater than the diameter of the spheres.
Unexpected results are found. When the sound wave-
length is larger than the diameter of the spheres, only a
single longitudinal mode is observed, as expected for a
medium that has no long-range rigidity. However, when
the wavelength of sound becomes comparable to the di-
ameter of the spheres, two longitudinal modes are ob-
served. The velocity of the higher-frequency mode lies
between those of the pure liquid and pure solid phases,
and it increases with increasing volume fraction of the
solid, ¢. By contrast, the velocity of the lower-frequency
mode is less than those in either of the two pure phases.
Moreover, it decreases with increasing ¢.

We interpret the higher-frequency mode as an excita-
tion that propagates within both the liquid and the solid
phases, as expected for a composite medium. In fact, at
low qd, the ¢ dependence of this mode is well described
by a simple effective-medium theory. As the volume frac-
tion of solids increases, the excitation is increasingly in
the solid phase, accounting for the increased velocity.
However, this excitation is strongly scattered by the pres-
ence of the spheres. As a result, gaps develop in its
dispersion curve, and the group velocity of the mode ap-
proaches zero near these gaps. The gaps occur at fre-
quencies that correspond well to the resonances in the
scattering from an isolated sphere in a fluid, where the
scattering is a maximum.

We interpret the lower-frequency mode as an analog of
an interfacial, or Stoneley wave. This is the only mode
that can propagate at a velocity slower than either those
of the liquid or the solid. This excitation is a mixed lon-
gitudinal and transverse excitation in the solid and is
purely longitudinal in the fluid. Its amplitude decays ex-
ponentially away from the interface in both the solid and
the fluid. In addition, it exists only for an elastic solid,
which can support shear modes, immersed in a fluid. Our
interpretation is supported by the data at very large qd,
where the wavelength is sufficiently small that the inter-
face appears nearly flat to the sound waves. Then the ve-
locity of this excitation approaches that calculated for a
Stoneley wave at a flat interface between PMMA and the
index-matching fluid. At smaller values of gd, this mode
persists. When the wavelength is comparable to the di-
ameter of the spheres, the mode must propagate between
spheres through the longitudinal decaying portion of the
excitation in the fluid. Thus the mode is observed only
when the volume fraction of the spheres is sufficiently
large, greater than ¢~=0.2. Moreover, since the velocity
of the interfacial portion of the excitation is so slow, the
measured velocity of the mode decreases as ¢, and thus
the amount of interface, increases.

Finally, in this paper, we have also presented a brief
summary of an extensive theoretical treatment of the
propagation of sound in suspensions of solid spheres.
This entailed an effective-medium approach, where the
basic unit of the medium is a solid sphere coated by a lay-
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er of fluid, whose thickness is determined by the volume
fraction. This basic unit is embedded within an effective
medium, and the elastic wave equation is solved for each
region to obtain the Green’s function. This is used to cal-
culate the density of states of phonon quasimodes. Maxi-
ma in this density of states correspond to minima in the
scattering of the excitation, and thus to propagating
modes. With this approach, we obtain quantitative
agreement with the experimentally measured dispersion
curves.

In conclusion, we have reported the detailed results of
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a study of sound propagation in suspensions of solid
spheres. Despite the fact that sound propagation in these
systems has been studied for over 100 years, the results
reported here demonstrate that unexplored and interest-
ing phenomena still exist.
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